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a b s t r a c t

The results of a numerical simulation study of the diffusion and retention in fully porous spheres and
cylinders are compared with some of the high order accuracy analytical solutions for the effective diffu-
sion coefficient that have been derived from the effective medium theory (EMT) theory in part I of the
present study. A variety of different ordered (spheres and cylinders) and disordered (cylinders) packings
arrangements has been considered. The agreement between simulations and theory was always excel-
lent, lying within the (very tight) accuracy limits of the simulations over the full range of retention factor
and diffusion constant values that is practically relevant for most LC applications. Subsequently filling
up the spheres and cylinders with a central solid core, while keeping the same packing geometry and
the same mobile phase (same thermodynamic retention equilibrium), it was found that the core induces
an additional obstruction which reduces the effective intra-particle diffusion coefficient exactly with a
eak parking

ffective medium theory
orous-shell particles

factor �part = 2/(2 + �3) for spherical particles and �part = 1/(1 + �2) for cylinders (� is the ratio of the core
to the particle diameter, � = dcore/dpart). These expressions hold independently of the packing geometry,
the value of the diffusion coefficients and the equilibrium constant or the size of the core. The expres-
sions also imply that, if considering equal mobile phase conditions, the presence of the solid core will
never reduce the particle contribution to the B-term band broadening with more than 33% (50% in case

of cylindrical pillars).

. Introduction

A proper understanding of he B-term band broadening, i.e., the
ingle source of band broadening that remains when the flow is
witched off, has become very important again with the recent re-
ntroduction of porous-shell particles [1,2]. Despite the fact that

ost manufacturers of these columns market their columns with
he argument of a reduced stationary zone mass transfer resistance
Cs-term band broadening), these columns owe their exceptionally
ow reduced plate heights to a significant extent also to a remark-
bly low B-term band broadening (next to a lower A-term and
-term band broadening) [3].
Given its physical meaning, the best way to measure the B-term
and broadening is by measuring the band broadening at very low
ow rates, or, even better, at zero flow rate. In the latter case, one
enerally uses the term “peak parking” method, a method first used
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by Knox [4,5] and invented during a famous taxi ride with Giddings
[6]. Briefly, this method is based on measuring the difference in
band variance between bands eluting from a column after having
been arrested for different “parking times” �tpark [5,7]. Accord-
ing to the Einstein–Schmoluchowski law, ��2 and �tpark can be
expected to vary according to a perfect linear relationship:

��2 = 2 · Deff · �tpark (1)

The proportionality factor (2.Deff) is directly linked to the B-term
plate height contribution via [5]:

hB = B

�0
= 2.

Deff/Dm

�0
· (1 + k′) = 2 · �eff

�0
· (1 + k′) (2)

In Eqs. (1) and (2), Deff represents the effective diffusion coef-
ficient experienced by the analytes while randomly diffusing

through the interstitial space and the meso-porous zone of the
particles.

To interpret the measurements of Deff and the B-term constant
in terms of the fundamental physicochemical and mass trans-
port coefficients, a sound theoretical model is needed. During the
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http://www.sciencedirect.com/science/journal/00219673
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Nomenclature

Symbols
a1 a2, coefficients in Eq. (14), values see Table 1 of part

I
b1 b2, b3, coefficients in Eq. (9b), values see Table 1 of

part I
B B-term constant, see Eq. (2)
c concentration of tracer [mol/m3]
d diameter [m]
D diffusion coefficient [m2/s]
hB dimensionless B-term plate height contribution

(=HB/dpart)
k′ phase retention factor
k′′ zone retention factor
K equilibrium distribution constant
n direction normal to the surface

Greek symbols
˛ permeability ratio
ˇ1 ˇ2, ˇ3, see Eq. (9b)
��2 difference in spatial variance [m2]
�tpark parking time [s]
ε porosity
� obstruction factor
� see Eq. (9b)
�0 reduced velocity of an unretained component

(=u0dpart/Dm)
� relative core diameter (� = dcore/dpart)
	2 Torquato’s three-point factor

Subscripts
A, pz relating to analyte A in porous zone
core core
e external
eff effective
FP fully porous
m molecular
part particle-based
pz porous zone-based
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engineering to model pure diffusion effects (i.e., in the absence of a
s stationary phase
T total

ears, many types of modelling have been applied to the field of
hromatography, ranging from analytical solutions to the funda-
ental mass conservation laws [1,2], microscopic and stochastical
odelling [8–10], Lattice–Boltzmann simulations [11,12], compu-

ational fluid dynamics (CFD) [13–15].
In the present study, the latter approach has been used to ver-

fy the accuracy of the effective medium theory (EMT) expressions
stablished in part I. This validation is needed because the EMT-
xpressions of Torquato [16] and Cheng and Torquato [17] that
re presented there were originally established for electrical and
hermal conductivity and have to the best of our knowledge never
een transformed in terms of the permeability of a binary medium
ith a partitioning equilibrium between its two composing phases,

s is encountered in chromatographic columns. In [15], we could
lready demonstrate that two other EMT-models (the Maxwell-
odel and the Landauer–Davis model) yielded a relatively good

greement with the B-term dispersion calculated using CFD in 2D

rrays of cylindrical pillars. However, the agreement was not per-
ect. For the Landauer–Davis (LD) model, it is clear from part I that
his was due to the fact that this model is simply not suited to rep-
esent the diffusion in particulate media, because it is based on a
togr. A 1218 (2011) 46–56 47

phase-symmetry assumption [18], implying that one should expect
the same effective diffusion if the particles and the interstitial void
would switch diffusion properties. Clearly this assumption is in
conflict with the physical reality in a chromatographic column. In
[15], we also did not find a perfect agreement between the numer-
ical data and the Maxwell-expression. However, this disagreement
can with the insights gained in part I now be fully understood as
a consequence of the fact that we erroneously used the Maxwell-
expression for spheres (Eq. (16) in part I), whereas we should have
used the cylinder-variant (Eq. (29) in part I) since we were consider-
ing cylindrical pillar beds. In [15], the agreement between the CFD
data on the one hand and the employed Maxwell- and LD-models
on the other hand were about equally good (or bad), so that it was
impossible to confidently decide on which one of the two would
be most suited to predict the effective diffusion in real packed-bed
columns [19].

Hence, given that the deviations between the fitting curves and
the simulation data observed in [15] were due to the use of inappro-
priate models and that much better expressions are available, the
present study has been set up to validate these improved models.
The reviewers of [15] also had serious concerns about the rele-
vance of the study presented there for 3D systems. The present
study therefore also essentially focused on the band broadening
in 3D sphere packings. Since our numerical resources are inade-
quate to simulate random 3D packings, only ordered 3D packings
were considered. As will be evidenced further on, this however
does not take away from the general validity of the conclusions
that can be drawn from the present study. To support this, the
effect of randomness was investigated by performing a set of 2D
simulations.

At this point, it is also important to realize that a sound and
stringent validation of any B-term expression cannot be obtained
from experimental work on real columns, because the value of the
diffusion coefficient inside the meso-porous zone of the particles
is a priori unknown under practically relevant chromatographic
conditions. This is mainly due to the fact that the observed intra-
particle diffusion is to a large extent determined by the so-called
stationary phase diffusion [20,21], i.e., the diffusion experienced
by the analytes when being in the retained state. Unfortunately,
little or no reliable expressions or data are available to predict the
value of the stationary phase diffusion coefficient Ds. One of the
complications in this respect is that Ds, in many literature reports
[20,21], appears to vary quite strongly with the phase retention fac-
tor, whereas it has become now become clear that part of this strong
relationship might be due to the fact that the reported Ds-values
have been measured using the traditional residence time weighted
model (RTW-model), which is known from part I and [15] to induce
a false additional curvature into the relation between Ds and the
retention equilibrium constant [15].

As a consequence, a reliable experimental validation of effec-
tive diffusion models is currently only possible in the absence of
a phase equilibrium, i.e., under conditions where surface diffusion
effects can be excluded. In this case, and provided the geometry of
the pore space can be represented as a packing of nano-spheres, the
intra-particle obstruction factor can relatively well be predicted by
applying the EMT-expressions to the intra-particle level (see also
Section 2.5 of part I). This approach has been used by Denoyel et al.
[22], who demonstrated that the Maxwell-expression can indeed
be confidently used to estimate the diffusion in the meso-pore
space as well as in the interstitial void. It also explains why the
Maxwell-expression is since long being used in the field of chemical
retention equilibrium or surface diffusion) in packed bed columns
[23].

For systems with retention, and when surface diffusion plays a
significant role, the analytical expressions established in part I can
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nly be validated using numerical methods, solving the diffusion
quations in systems where all local diffusion coefficient values
re exactly known.

Also the surprisingly simple EMT-expression for coated-
pheres, or, equivalently, porous-shell systems established by
ashin and Shtrikman requires some form of validation, as it is the
rst time this expression has been used in the field of chromatog-
aphy. According to the Hashin–Shtrikman solution, the individual
orous-shell particles can, despite the presence of a large solid core,
till be represented as a uniform zone with a uniform intra-particle
iffusion coefficient Dpart. Even more, this externally observed

ntra-particle diffusion coefficient can be directly linked to the local
iffusion coefficient in the shell layer (where locally D = Dpz) via
very simple, yet mathematically exact expression for the intra-
article obstruction factor �part:

part = Dpart

Dpz
= 2

2 + �3
(spherical particle case) (3a)

part = Dpart

Dpz
= 1

1 + �2
(cylindrical pillar case) (3b)

herein � is the relative core diameter � (� = dcore/dpart) [3]. This
mplies that the intra-particle diffusion rate that would be mea-
ured by an external observer will be reduced with a given fraction
part given by Eqs. (3a) and (3b) when a solid core is put in

he center of an otherwise unchanged particle (and while keep-
ng the same mobile phase composition because otherwise Dpz

ill vary). The value of this obstruction factor only depends on
he relative core diameter �, and is independent of the pack-
ng arrangement and the value of the retention and diffusion
oefficients.

To numerically verify the EMT-expressions presented and dis-
ussed in part I, the following numerical verification strategy was
dopted. Using CFD simulations, we first calculated the B-term
and broadening (via Deff) in ordered packings of uniform spheres
either fully non-porous or fully porous) arranged in either of the
hree types of ordered sphere packings (simple cubic (sc), body cen-
ered cubic (bcc) and face centered cubic (fcc) packings of spheres,
ee Fig. 2 of part I). Initially, only two different values for the
xternal porosity (resp. εe = 0.35 and 0.40) were considered. These
alues encompass the typical range of porosities encountered in
andomly packed beds of uniform spheres. A straightforward critic
hat could be formulated is that the spheres in an ordered fcc- or
cc-arrangement with εe = 0.35 and 0.40 do not touch each other.
owever, from the observation made in Figs. 5 and 6 of part I,

howing that the B-term constant values produced by the Torquato-
ased model for random packings with εe = 0.40 (touching spheres)

ies very close to those predicted by the ordered fcc- and bcc-model
or the same εe = 0.40-porosity (and thus relating to a system with
on-touching spheres), it can be inferred that the actual touching
f the spheres does not lead to a sudden change in diffusion behav-
or. To investigate the effect of the touching of the spheres, we also
onsidered an ordered fcc-packing around its closest-packing limit,
llowing even for a small overlap of the spheres (εe = 0.244). The
ffect of packing randomness has been investigated as well. For this
urpose, we switched to 2D cylinder packings because the diffusion

n 2D systems can be computed in a much shorter time than in a
D system. This was needed because switching from an ordered
o a disordered system also automatically implies that much
arger geometries, containing much more particles, need to be
onsidered.
The different considered particle packings were subsequently
odified by introducing an impermeable sphere (or cylinder) in

he center of each spherical particle (Fig. 1a) or cylindrical pillar
Fig. 1b). For each packing type, two or three different core sizes
ave been considered.
Fig. 1. (a) Unit cell for a body centered cubic packing of particles containing a core
with relative radius � = 0.63. (b) Part of the computational domain used in the 2D
simulations.

Next, the obtained results were compared to the most use-
ful EMT-models originating from the study presented in part I.
The RTW-model, traditionally used in literature to model the
B-term constant and to determine the value of the surface dif-
fusion coefficient [5,7,24], was discarded because this model is
physically invalid and leads to erroneous values for Dpart, as was
shown in part I. The LD-model was no longer considered either,
because of the uncertainty of the z-value that needs to be used,

as well as because of its poor modelling accuracy observed in
part I. The latter is the consequence of the fact that the LD-model
is based on the physically unsound phase-symmetry assumption
(see part I).
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Fig. 2. Visualization of the diffusion process, showing a top view of a body cen-
tered cubic packing and the evolution of the tracer species concentration at three
different parking times: (a) 4.2 ms, (b) 13.2 ms, and (c) 24 ms. Each different colour
represents a 5% fraction of the concentration at the top of the concentration distri-
S. Deridder, G. Desmet / J. C

. Geometries and employed numerical procedures

For all different considered packing geometries (fcc, bcc, sc,
quare and equilateral triangular), except the random pack-
ng, the simulation domains were build using a unit cell that

as translated several times in the x-direction. Fig. 1a shows
n example of one of the considered unit cells, including the
mployed computational grid and the solid core needed to mimic
he porous-shell case. An overview of all considered unit cells
or the 3D packings is shown in Fig. 2 of part I. In the x-
irection (the diffusion direction), the computational domains
ere 10–20 particle diameters long. This is the minimum length
eeded to prevent the tracer from leaving the domain (by diffu-
ion) before the effective diffusion coefficient reaches its steady
alue. In the other directions the computational domain was
ized a single unit cell and symmetry boundary conditions were
pplied:

∂c

∂n
= 0 (4)

For a random packing, it is impossible to identify a unit cell and
he size of the computational domain cannot be reduced by using
ymmetry boundary conditions. As a consequence, much larger
imulation domains are needed so that we had to restrict our-
elves to 2D cases. The considered random packings were created
sing a drop-and-roll 2D packing algorithm to pack cylinders with
uniform size distribution with a width of 20%. After the pack-

ng procedure, the cylinders were shrunk to obtain the desired
ed porosity (εe = 40%). The size of the computational domain
as 16 particle diameters wide and 27 particle diameters long.

ig. 1b shows part of the domain. The computational domain for
he random packings was slightly longer than the structured ones,
ecause it takes longer before the effective diffusion coefficient
eaches a steady-state value in the random case. If the length of the
omain would have been shorter, some of the tracer would already
ave reached the boundaries (in the x-direction) of the domain
efore the effective diffusion coefficient would have reached its
teady-state value. In all cases, the particles had a diameter of
.7 �m.

All domains (structured and random) were drawn and dis-
retized using a commercial software package (Gambit®). This
iscretization was done using a tri-mesh meshing scheme. The size
f the grid cells was chosen in such a way that the calculated effec-
ive diffusion coefficients were grid independent (increasing the
rid size caused the effective diffusion coefficient to increase less
han 0.1–0.2%). In practice, this came down to dividing each parti-
le in about 1000 (for the circular cross-section of the cylindrical
illars) to 40,000 (for 3D spheres) grid cells (the grid cells outside
he particles were of a similar size).

After this discretization step, a commercial computational fluid
ynamics software package (Fluent® v. 6.3) was used to solve the
iffusion mass balances:

∂c

∂t
= Dm∇2c in the mobile zone,

∂c

∂t
= Dpz∇2c in the porous zone (5)

The boundary condition at the interface between the mobile
one and porous zone, was the following:

∣ ∣

m

∂c

∂n

∣∣∣
mobile zone

= Dpz

Kpz

∂c

∂n

∣∣∣
porous zone

(6)

For the structured packings, symmetry boundary conditions
ere imposed at the domain boundaries in the y- and z-directions.
bution (situated at the left of the represented flow domain, i.e., at the x-symmetry
boundary). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

At the boundaries in the x-direction, an outlet boundary condi-
tion was imposed on one side and a symmetry boundary condition
on the other side. In the case of the 2D random packing, there
is no symmetry in the x-direction, hence two outlet boundary
conditions were imposed. In the y-direction periodic boundary con-
ditions, mimicking an infinitely wide domain, were imposed. The
mobile zone was given the properties of water and the meso-porous
zone (either the full particle or only the porous-shell layer) was
attributed an internal porosity of 0.35. To mimic the start of the
peak parking experiments, a thin region (width = 0.2 �m, 7% of a
particle) of the flow domain was filled with a tracer liquid hav-
ing the same physicochemical properties as the rest of the mobile
phase. This region was defined at the x-symmetry boundary (or
in the middle of the domain in the random packing cases), and
extended along the entire domain in the y-direction (and also in
the z-direction for 3D cases). In the interstitial space, the tracer
was attributed a diffusion coefficient Dm (which was always kept
at Dm = 10−9 m2/s), whereas the tracer dye was assigned a diffu-
sion coefficient Dpz in the meso-porous zone in the particles. In
this meso-porous zone, the tracer species were also subjected to a
species equilibrium by introducing a reversible chemical reaction
that transforms the freely diffusing species A into a retained species
A* via a forward and backward reaction rate combining into a given
equilibrium constant KA,pz [13].

A fixed time stepping method was chosen to subsequently
solve the diffusion equation using an implicit, segregated solution
scheme with a second order implicit unsteady formulation. Typical
time step sizes were in the order of 1 ms. At every time step, the 0th,
1st and 2nd order spatial moment of the tracer concentration were
reported [13] and the effective diffusion coefficient was calculated
using Eq. (1) and the increment in spatial variance that could be
derived from the spatial moments.

3. Results and discussion

3.1. Details and accuracy of the simulation

Fig. 2 shows how the iso-concentration planes (expressed as a
given fraction of the maximum of the concentration curve) evolve
with the time in a top-view of one of the considered sphere pack-

ings. The fact that the iso-concentration planes are not perfectly
flat but have a rather wavy shape is a consequence of the fact that
the geometry of the bed slightly changes with its depth, so that
molecules at different depths experience a slightly different diffu-
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ig. 3. Variation of the band variance �2 with �tpark for k′′ = 5 and the case of an
cc-packing with εe = 0.4, Dpz/Dm = 0.25 and for different values of � (� = 0, 0.63, 0.81
nd 0.94).

ion rate. This in turn induces concentration gradients in the depth
f the considered packing, but these effects are well-accounted
or in the higher order accuracy EMT-models, as well as in the 3D
FD-simulations.

Fig. 3 shows how ��2
diff varies with the considered peak park-

ng times. In agreement with Eq. (1), a perfectly linear relationship
s obtained for all considered cases. The 95% confidence intervals
n the slopes were smaller than 0.05%. Comparing the computed
iffusion rate in a fully open system (no spheres), where the slope
f the curves should hence simply be equal to 2.Dm, we could esti-
ate that the numerical diffusion (originating from the fact that

he considered grid cells still have a finite size) was of the order of
ome 0.15–0.25%.

.2. Effect of geometry and retention and diffusion coefficients on

eff = Deff/Dm and agreement with the EMT-models

Fig. 4 shows the variation of Deff/Dm with varying retention for
he Maxwell and the Cheng–Torquato models. Two other values for
pz have been considered as well (see Fig. S-2 of the SM of part I for

he corresponding figures).
Before continuing, it should be kept in mind that, although the

esults are presented here in terms of �eff, representing the obstruc-
ion factor for the effective longitudinal diffusion, the presented
ata can also be readily transformed in terms of the B-term con-
tant appearing in any reduced plate height expression using (see
q. (2)):

= 2�eff(1 + k′) (7)

It should also be noted that the model curves shown in Fig. 4
re not obtained via curve fitting, but are calculated from scratch
i.e., only using the known values of the retention factor, Dpz, εe and
m) using either the Maxwell-based (1st order approximation, red
urves) and the Cheng–Torquato based (maximal accuracy solu-
ion, black curves) expressions for spherical particles established
n part I, respectively given by:

eff = 1
εT.(1 + k′)

· 1 + 2.ˇ1(1 − εe)
1 − ˇ1(1 − εe)

(Maxwell − based model)

(8)
nd

eff = 1
εT.(1 + k′)

(
1 − 3.(1 − εe)

�

)
(Cheng–Torquato based) (9a)
togr. A 1218 (2011) 46–56

wherein � is a parameter that needs to be calculated using:

� = −ˇ−1
1 + (1 − εe) + b1ˇ3(1 − εe)10/3 + b2ˇ5(1 − εe)14/3

+b3ˇ2
3(1 − εe)17/3 + b4ˇ7(1 − εe)6 + b5ˇ3ˇ5(1 − εe)7

+b6ˇ9(1 − εe)22/3 (9b)

The numerical coefficients for the bi-coefficients appearing in
Eq. (9b) are given in Table 1 of part I. The ˇi-parameters appearing
in Eqs. (8), (9a) and (9b) are given by (with i = 1,3,5,. . .) [16]:

ˇi = ˛part − 1
˛part + (i + 1)/i

(10)

This ˇ1-factor in turn depends on the value of the so-called rel-
ative particle permeability ˛part, which can be readily calculated
from the known value of either the phase or zone retention factor
(k′ or k′′) and the value of intra-particle diffusion coefficient Dpart

using:

˛part = εe.k′′

1 − εe
· Dpart

Dm
= (1 + k′).εT − εe

1 − εe
· Dpart

Dm
(11)

with k′ the phase retention factor (determined with respect to the
t0-marker) and k′′ the zone retention factor, related to the former
via (see SM of part I):

k′′ = (1 + k′).
εT

εe
− 1 (12)

In the general case, Dpart is determined by the intrinsic diffusion
coefficient (Dpz) prevailing in the meso-porous part of the parti-
cle and the relative core diameter � via the mathematically exact
expressions given in Eqs. (3a) and (3b).

In the present study, both Dpz and k′ are imposed numerically,
and also the values of �, εe and εT were known exactly, so that the
application of these values into the combination of Eqs. (8)–(11)
directly yielded the model curves for �eff shown in Fig. 4. The excel-
lent agreement between the thus obtained model curves and the
numerical data hence provides an excellent mutual validation of
both the computational method and the analytical expressions.
The data are even refined enough to note (see inset of Fig. 4) the
difference between the Maxwell-based model (1st order approx-
imation) and the Torquato-based model for cases with very low
permeability (i.e., for k′′ → 0). The higher order accurate Torquato-
based model clearly goes through the computed data whereas the
Maxwell-model (lower order accuracy) slightly overestimates the
true value, which is in full agreement with the findings in Figs. 4
and 5 of part I. As regards k′′ = 0, similar data have been reported by
Kim and Chen [25]. The values obtained in that study are in quali-
tative agreement with the mathematically correct result of Cheng
and Torquato, but are slightly off the theoretical prediction. Over
the largest part of the curves, the Maxwell- and the Torquato-based
model however nearly perfectly coincide.

As can be noted by considering the curves for the different solid
core size cases (varying from � = 0 to 0.94), the EMT-models are also
capable of perfectly predicting the effect of the presence of a solid
core. To generate the numerical data, the diffusion in the shell-layer
(Dpz) was kept constant. In agreement with the Hashin–Shtrikman
theory, the model curves were produced using the same EMT-
expressions as used for the fully porous particles, but now with
Dpart calculated via Eq. (3a) and the known value of Dpz. In agree-
ment with the physical expectations, it can clearly be observed that,
the larger the core, the more the effective diffusion through the par-

ticle and the bed are reduced (obstructed). From the fact that the
curves for the different �-cases lie more closer together in the low
Dpz-case (Fig. 4a) than in the high Dpz-case (Fig. 4b), it can also be
concluded that the obstructing effect of the solid core is more pro-
nounced when the diffusion rate in the meso-porous zone is large
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nd is less pronounced when this rate is already small. This is also
n agreement with one’s physical intuition, because the dominant
iffusion trajectory followed by the analytes in the latter case is
nyhow already situated in the interstitial void space where the
iffusion is 10 times faster. As a consequence, the reduction of the

ntra-particle diffusion induced by the solid core only has a limited
ffect. The effect of the presence of a solid core is further discussed
n Section 3.3.

Comparing the agreement between the model curves and the
omputed data with that obtained for the Maxwell-model in [15],
t can be concluded that the computed Deff-data now fit much better

ith the Maxwell-model than was the case in [15]. In hindsight, we
an now attribute this to the fact that in [15] the sphere-variant of
he Maxwell-model was used to model a cylinder packing, whereas
bviously the cylinder variant should have been used. The case
f a cylinder packing is reconsidered in Fig. 5, showing the vari-
tion of Deff/Dm with varying retention in two types of cylinder
ackings (equilateral triangular and cubic arrangement) and for dif-

erent cylindrical core sizes (ranging from � = 0, fully porous, up to
= 0.81).

The red and black curves in Fig. 5 respectively represent
he cylinder variant of the Maxwell-model and the three-point
orquato-model for cylinders, respectively given by (see Section
0, 0.63, 0.81 and 0.94) and with εe = 0.4, for two Dpz-cases: (a) Dpz/Dm = 0.5 and (b)
the Maxwell-model ( ) and the Cheng–Torquato model bcc (– –), fcc (—). The

ences to color in this figure legend, the reader is referred to the web version of this

2.4 of part I):

�eff = 1
εT.(1 + k′)

· 1 + ˇ1(1 − εe)
1 − ˇ1(1 − εe)

(Maxwell − based model)

(13)

and

�eff = 1
εT.(1 + k′)

· 1 + ˇ1(1 − εe) − εe	2ˇ1
2

1 − ˇ1(1 − εe) − εe	2ˇ1
2

(Torquato-based model) (14)

The parameter 	2 appearing in Eq. (14) is the so-called three-
point parameter which needs to be calculated using an expression
of the form:

	2 = a1(1 − εe) exp(a2(1 − εe)) (15)

using the ai-coefficients given in Table 1b of part I.

The observations that could be made from Fig. 4 clearly also

hold for the cylinder packing case shown in Fig. 5: excellent fit of
the data with the Maxwell- and Torquato-based models (with the
latter to be preferred in the small k′′-range where the geometry of
the packing starts to play a dominant role) and a stronger reduction
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ig. 5. Variation of Deff/Dm with k′ and k′′ for ordered cylinder packings with vario
pz/Dm = 0.1. Computational data for a square array (�) and an equilateral triangula
odel with 	2 = 9.70 × 10−2 for the square array (– –), 	2 = 8.07 × 10−3 for the equila

For interpretation of the references to color in this figure legend, the reader is refe

nduced by the solid core in the large Dpz-case as compared to the
ow Dpz-case. The parallelism between Figs. 4 and 5 also shows that
2D representation produces a good qualitative insight in the dif-

usion behavior of 3D systems. This could in fact already be inferred
rom part I, where it could be noted that the EMT-expressions for
ylinders and spheres are very similar and only differ by the value
f the numerical constant appearing in it.

In the present study, the qualitative analogy between 2D and 3D
ystems has been used to assess the effect of the packing random-
ess on the diffusion behavior of chromatographic packings. From
art I, we already know that there is a broad range of retention fac-
ors wherein the exact packing geometry anyhow only has little or
o effect on the observed effective longitudinal diffusion, so that the
ifference between ordered and random packings should anyhow
e very small (and even non-existent when ˛part is close to unity).

his is now confirmed in Fig. 6, showing the computed data points
or the random packing geometry shown in Fig. 1b. Noting that
he Maxwell-model curve in Fig. 6 follows exactly the same trajec-
ory as in Fig. 5 (the Maxwell-model neglects any close-neighbour
nteractions and yet hence produces the same Deff-estimate for an
(� = 0, 0.63 and 0.81) and with εe = 0.4, for two Dpz-cases: (a) Dpz/Dm = 0.5 and (b)
(�) of cylinders is shown as well as the Maxwell-model ( ) and the Torquato

riangular array (—). The meaning of the blue circled data points is given in the text.
the web version of this article.)

ordered and a random packing), the impact of randomness on the
longitudinal diffusion can be readily assessed by comparing the
position of the computed data points with respect to the Maxwell-
model curve (red curve). As can be noted, the data points for k′ = 5
and 2.5 nearly perfectly coincide with the Maxwell-curve, showing
that the effect of randomness is negligible. For larger k′, the high
order accuracy Torquato-based curves (plain black curve for the
equilateral triangular array and dashed black curve for the square
array) and the Maxwell-curve anyhow lie very close to each other,
so that in this range also only a small effect of randomness can be
expected. For very small k′, the computed (random case) data points
lie slightly below the perfectly ordered equilateral triangular case
shown in Fig. 5 (1% for k′ = 0.2), while the agreement with the the-
oretical prediction remains good. For the non-porous pillar case
(k′′ = 0), the difference between the random and the ordered equi-

′′
lateral triangular case is 6%. The k = 0-data point also lies relatively
far away the model curve. We assume this can be explained by the
fact that the theoretical value of 	2 predicted via Eq. (15), using ai-
parameter values based on the calculations in [26], most probably
still depends on the actual degree of randomness and packing type.
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q. (15) produced a value of 	2 = 0.18, and this is also the value used
o establish the black model curves in Fig. 6. On the other hand, we
ound that the Torquato-based model curve can be perfectly fitted
o the computed data point when taking 	2 = 0.09. As a conclusion,
t is assumed that for the case of random packings, the value of 	2
roduced by Eq. (15) is only indicative and might still vary strongly
epending on the exact structure of the bed.

To investigate whether any special diffusion effect is induced
f going from a situation wherein the particles are “hanging” in
pace (as is assumed in the data shown in Figs. 4–6) versus the case
herein they actually touch, we also simulated the effective diffu-

ion in a 3D fcc-packing with εe = 0.244, i.e., for the case wherein
he spheres actually touch. As can be noted from Fig. 7, the gen-
ral conclusions that could already be drawn from Figs. 4 and 5 still
pply (Maxwell fits very well over broad range of k′-values for any

-values, while a near-perfect agreement is obtained using the
pz

orquato-model; effect of core can be exactly represented using
qs. (3a) and (3b)).

This suggests that the general rules that can be drawn from the
resent study hold irrespective of the fact whether the included
(� = 0, 0.63 and 0.81) and with εe = 0.4, for two Dpz-cases: (a) Dpz/Dm = 0.5 and (b)
e Torquato-model (—) with 	2 = 1.79 × 10−1. The meaning of the blue circled data
nd, the reader is referred to the web version of this article.)

particle or pillar regions actually touch or not. The fact that no spe-
cial diffusion effect is induced when a sphere suspension reaches
its close-packing limit could also already be inferred from Fig. 3 of
part I, where the represented Deff/Dm-values vary very smoothly
with the external porosity εe and display no strong sudden change
in the vicinity of the close-packing limit (denoted by fx1). In Fig. 8
of the present part, this is reconfirmed for the case of fully porous
particles. Grouping all considered εe-values, Fig. 8 in fact comple-
ments Fig. 4 which only represent one packing density (εe = 0.40).
Plotting Deff/Dm versus εe, Fig. 8 now not only reconfirms that the
computed data agree very well with the EMT-model, but it also
shows that the close-packing limit is approached without noting
any sudden change in effective diffusion rate. Whereas Fig. 8 only
shows the data relating to the fully porous particle case, it should
be noted that fully similar graphs were obtained for the different
considered porous-shell cases (data not shown), as well as for all

different considered cylinder packing cases (data also not shown).
Fig. 8 also reconfirms another finding that was already apparent
in Figs. 4–7, i.e., that the effect of the packing geometry is largest
(albeit still very small) when k′′ turns to zero (fully solid particle
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light overlap), for two Dpz-cases: (a) Dpz/Dm = 0.5 and (b) Dpz/Dm = 0.1). Computatio
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imit). In Fig. 8, this limit corresponds to the upper bundle of curves,
here indeed the curves representing the Maxwell-model and the
heng–Torquato model diverge in the small εe-range.

For all other k′′-cases, the curves for the Maxwell-model (based
n the dilute suspension approximation) and the Cheng–Torquato
odel (taking close-neighbour interactions into account) nearly

erfectly coincide. This implies that the dominant factor determin-
ng the effective longitudinal diffusion in chromatographic columns
lled with fully porous or porous-shell particles are the external
orosity, the intra-particle diffusion constant and the retention fac-
or, and not the actual microscopic packing arrangement or the fact
hat the spheres actually touch or not.

.3. Effect of the presence of a solid core on Dpart and �eff

The effect of the relative core diameter � on the computed curves
bserved in Figs. 4–7 for a given value of k′ or k′′ is perfectly in
ine with the coated-particle model of Hashin–Shtrikman (see Eqs.
3a) and (3b)). This is investigated in Fig. 9. The �part-data points
hown there have been calculated as the reduction of the Dpart-

alue that is needed in Eq. (9a), (9b) or (14) to go from the Deff-value
umerically computed for the fully porous particle case (� = 0) to
he Deff-value numerically computed for any of the given consid-
red porous-shell cases. Doing this calculation for all considered
ases, it was striking to note that the same �part-value was obtained
arious � (� = 0, 0.63, 0.81 and 0.94) and εe = 0.244 (touching spheres with even a
ata for the fcc-packing (�) is shown as well as the Maxwell-model ( ) and the
xt. (For interpretation of the references to color in this figure legend, the reader is

for all cases with the same KA,pz-value. This is in full agreement
with the Hashin–Shtrikman theory expressed by Eqs. (3a) and (3b),
showing that Dpart only depends on �, provided of course the Dpz-
value appearing in the left hand side of (Eqs. (3a) and (3b)) remains
constant. In practice, Dpz is guaranteed to remain constant when
comparing cases with the same meso-porous zone material and
with the same mobile phase composition, i.e., with the same intrin-
sic KA,pz. The latter can be noted from Eqs. (44) and (51) of part I,
showing that Dpz is fully determined by the value of KA,pz, which
remains unchanged as long as the same mobile phase is being used.

Considering the constant mobile phase-composition case, the
effective retention factors k′′ and k′ will inevitably decrease with
increasing �, because a growing solid core also implies that less
volume is available for retention. It can easily be verified [1] that,
regardless of whether one expresses the retention in terms of the
zone or phase retention factor, the presence of a solid core will
reduce the actual retention factor with a factor (1 − �3) when KA,pz
is the same (i.e., for the same mobile phase). This can also be directly
noted from Eqs. (S-8a) and (S-8b) of the SM of part I, yielding:

3

k′ = (1 − εe).(1 − � ).(1 − εpz).KA,pz

εT
(16)

k′′ = 1 − εe

εe
.(1 − �3).[εpz + (1 − εpz).KA,pz] (17)
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.35 and 0.4 already shown in Figs. 4 and 7 and in Fig. S-5 of the SM). The represented
odel curves have been obtained using the Maxwell-based model ( ) and the

heng–Torquato based model (—). (a) Dpz/Dm = 0.5 and (b) Dpz/Dm = 0.1.

As a consequence, the situation wherein the core size of the
articles is gradually changed while keeping the mobile phase com-
osition constant leads to the kind of trajectory indicated by the
lue circles added to Figs. 4–7. The evolution of the �part-values

long the trajectory indicated by the blue circles was subsequently
epresented Fig. 9. As can be noted, these values perfectly agree
ith the Hashin–Shtrikman curves predicted by Eqs. (3a) and (3b).

his clearly holds for all the different geometries (both ordered

ig. 9. Variation of the numerically computed �part-values (see text for details)
btained for the blue circled data points shown in Figs. 4–7 as a function of � for
pheres and cylinders. The solid lines represent the Hashin–Shtrikman model given
y Eqs. (3a) and (3b). (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of this article.)
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and disordered) and Dpz-values considered in Figs. 4–8, and for the
spherical as well as for cylindrical particles.

It was also verified that, whatever other k′′-value was selected
as the starting point on the fully porous particle curve (� = 0), the
corresponding data points of the constant KA,pz-trajectory always
fell on the same Hashin–Shtrikman curve. This curve is clearly
independent of the geometry, as the data points for the different
packing types (fcc and bcc for spherical particles and square and
equilateral triangular for cylindrical pillars), the different εe-cases
(εe = 0.40, 0.35, 0.244), the different Dpz-cases (Dpz = 5 × 10−10 m2/s,
2.5 × 10−10 m2/s, 1 × 10−10 m2/s, 5 × 10−11 m2/s) and the disor-
dered case all fall on the same curve, in agreement with the theory
[27,28].

Also interesting to note, and also partly counterintuitive, is that
the intra-particle obstruction factor �part only decreases steadily
and reaches a value that is finite (and not zero) when the rela-
tive core size approaches unity. This can be understood as follows.
Whereas a growing core indeed leads to an ever growing diffu-
sion obstruction, the growing core at the same time also reduces
the volume over which the species need to diffuse. The latter partly
counters the effect of the growing obstruction, obviously leading to
a non-zero obstruction factor when approaching the � = 1 − limit.

Whereas the presence of a solid core leads to a clear reduction of
the intra-particle diffusion coefficient, the effect of the solid core on
the effective longitudinal diffusion in the whole bed (represented
by �eff) is less straightforward. To better understand this, we have
investigated the effect of a growing core on �eff in more detail.

Considering first the case of a constant mobile phase compo-
sition, leading to the important simplification that Dpz remains
invariable, we can say that the presence of a solid core has two
effects on �eff. Firstly, it reduces the intra-particle diffusion rate
with a given fraction �part, directly given by Eqs. (3a) and (3b) for
the constant mobile phase-case. Secondly, it also reduces the effec-
tive retention factors k′′ and k′, in agreement with Eqs. (16) and
(17).

The effect of a growing core size in the case of a constant mobile
phase composition can in fact readily be visualized when follow-
ing the trajectory indicated by the blue circles in Figs. 4–7 from
right to left (i.e., by starting on the fully porous particle curve,
� = 0). The same data points are also represented in Fig. 10, together
with the EMT-model lines. Apart from the blue circled data points,
also other starting points on the fully porous particle curve have
been considered (corresponding to different k′′

FP-values). Fig. 10a
shows that, in cases with a high Dpz and under constant mobile
phase conditions, the presence of a small solid core leads to a slight
decrease of �eff, because the increased intra-particle obstruction
induced by the presence of the solid core is the dominant effect.
However, when the core becomes larger and larger, the increase in
�eff that always accompanies a decrease in retention starts to domi-
nate and �eff increases (all EMT-models namely predict an increase
in �eff when k′′ or k′ decreases, see for example Figs. 4–7). When
Dpz is small (Fig. 10b), in which case the variation of �eff with k′ is
very strong (as can for example be witnessed from the difference
between Fig. 4a and b), the initial reduction of �eff is not observed,
because the reduced-retention effect of the solid core immediately
dominates the intra-particle obstruction effect. As can be noted
by comparing the curves for the different k′

fully porous-values, the
effect on �eff depends in an intricate way on the k′-value of the
fully porous particle reference case.

For the practically more relevant case, i.e., that wherein the
mobile phase would be adapted to keep the same retention factor

when considering differently sized solid cores, the situation is more
difficult to analyze since now both Dm and Dpz will change when
considering different core sizes (because of the change of Dpz with
KA,pz). However, neglecting these effects, which to a first approxi-
mation is always possible, the effect of the presence of a solid core
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Fig. 10. Variation of �eff with � for different reference retention factors k′′
FP (with

k′′
FP = k′′ for case with � = 0) for an fcc-packing of spheres, and for two Dpz-cases:

(a) Dpz/Dm = 0.5 and (b) Dpz/Dm = 0.1. The blue circled data points relate to the blue
circled data points shown in Fig. 4. They follow the k′′-trajectory obtained by start-
ing at k′′

FP for � = 0 and subsequently assuming that KA,pz remains constant while �
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an readily be visualized by noting how the curves for the differ-
nt �-cases presented in Figs. 4–7 decrease for a given constant k′′-
r k′-value. Doing so, it can be noted that the presence of a solid
ore always leads to a net reduction of the effective longitudinal
iffusion in any possible case. This is fully in line with the simple
hysical fact that the cores induce an additional obstruction to the
ffective longitudinal diffusion.

. Conclusions

Using computational fluid dynamics simulations of the B-term
and broadening under retained and non-retained species condi-
ion, it can be shown that the exact analytical expressions that
an be derived from the effective medium theory (EMT) can
xactly represent the effective diffusion or B-term band broad-
ning under liquid phase chromatographic conditions in a wide
ariety of geometries. On the other hand, the excellent agreement
lso validates the adopted numerical calculation procedures. The
tudy also shows that 2D and 3D packings produce qualitatively
ery similar diffusion effects, so that the former can be used to
ain insight in the effective diffusion processes occurring in the
atter.

Under most conditions, the simple Maxwell-based expression
escribes the computed data already very well (especially in the
′ > 0.5-range). This implies that Eq. (8) (or the Torquato-based
odels if one would go for the ultimate precision) should be used
s the new standard for the prediction of the B-term constant, as a
eplacement of the residence time-weighted B-term expressions
hat have been used up to now in the field of chromatography.
he fact that the Maxwell-model, containing no information about
ts neighbouring particles, already provides such accurate predic-
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tions also implies that, apart from the bulk mobile phase diffusivity
Dm, the dominant factors determining the effective longitudinal
diffusion in chromatographic columns filled with fully porous or
porous-shell particles are the external porosity, the intra-particle
diffusion constant and the retention factor, and not the actual
microscopic packing arrangement or the fact that the spheres actu-
ally touch or not.

In agreement with theory, the EMT-expressions describing the
intra-particle obstruction caused by the presence of a solid core,
resp. �part = 2/(2 + �3) for spherical particles and �part = 1/(1 + �2)
for cylinders (� is the ratio of the core to the particle diameter,
� = dcore/dpart), hold independently of the geometry of the packing,
the value of the diffusion coefficients and the equilibrium constant
and the size of the core. This rule also implies that, if considering
equal mobile phase conditions, the presence of the solid core will
never reduces the particle contribution to the B-term band broad-
ening below 66% (50% in case of cylindrical pillars) compared to a
fully porous particles with the same meso-porous zone character-
istics.

Comparing the porous-shell and the fully porous particles under
equal mobile phase conditions, the presence of a small solid core
can lead (when the diffusion coefficient Dpz governing the meso-
porous zone is large) to a decrease of the effective longitudinal
diffusion obstruction factor �eff, but, when the core exceeds a given
critical size, �eff rapidly increases with the increasing diameter,
until eventually the (high) �eff-value of a non-porous particle col-
umn is reached. When Dpz is small, �eff increases monotonously
with increasing core diameter. Comparing the porous-shell and
the fully porous particles under equal retention factor conditions
(which corresponds to comparing the different �-curves in Figs. 4–7
along any possible vertical line), the presence of a growing solid
core will to a first approximation always lead to a net reduc-
tion of the of the effective longitudinal diffusion, thus reflecting
the obvious additional obstruction caused by the presence of the
impermeable solid cores.
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